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P. K. Papachristou,1 E. Mavrommatis,1 V. Constantoudis,z’3 F. K. Dia.konos,1 and J. Wambach®
lDepartmemf of Physics, University of Athens, GR-15771, Athens, Greece
2Institute of Microelectronics (IMEL), NCSR “Demokritos,” P. O. Box 60228, Aghia Paraskevi, Attiki, Greece 15310
3Physics Department, National Technical University, Athens, Greece
*Institut fiir Kernphysik, Technische Universitit Darmstadt, Schlossgartenstr. 9, D-64289 Darmstadt, Germany
(Received 20 May 2005; revised manuscript received 7 October 2005; published 6 January 2006)

We consider the relation between relaxation time and the largest Lyapunov exponent in a system of two
coupled oscillators, one of them being harmonic. It has been found that in a rather broad region of parameter
space, contrary to the common expectation, both Lyapunov exponent and relaxation time increase as a function
of the total energy. This effect is attributed to the fact that above a critical value of the total energy, although
the Lyapunov exponent increases, Kolmogorov-Arnold-Moser tori appear and the chaotic fraction of phase
space decreases. We examine the required conditions and demonstrate the key role of the dispersion relation for
this behavior to occur. This study is useful, among other things, in the understanding of the damping of nuclear

giant resonances.
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I. INTRODUCTION

It is well known that time-independent Hamiltonian sys-
tems with at least two degrees of freedom can exhibit chaotic
behavior [1,2]. In most cases the dynamics is mixed, i.e.,
regular and chaotic regions coexist in phase space. In gen-
eral, the largest Lyapunov exponent (\) is the most common
measure of the chaoticity of the system. It appears that, at
least in completely chaotic systems, increasing A, the relax-
ation time, defined as the time required for an observable to
reach its equilibrium value, decreases [3,4]. However, in
mixed systems the relationship between A; and relaxation
time is not well established yet.

Relaxation time is an important tool in many-body prob-
lems [5-15]. Let us suppose that a many-body system is
collectively excited by an external perturbation which, for
example, may be a collision with a particle projectile or a
laser pulse. The energy of the collective excitation is gradu-
ally absorbed by the internal dynamics of the system and the
time needed for this absorption to occur is the relaxation
time of the excitation.

Such relaxation processes can be encountered, for ex-
ample, in the field of nuclear physics and in particular in the
damping of nuclear giant resonances [16—19]. In the latter
the system has mixed dynamics. The mechanism responsible
for the dissipation of nuclear collective energy is still an
open problem. In particular, the effects of chaotic dynamics
on the damping of nuclear excitations are still not completely
understood. One-body dissipation [20] refers to processes in-
volving a single nucleon (with mean free path of the order of
the size of the nucleus) interacting with the collective nuclear
potential. We have employed a simple classical model based
on this independent particle approach for the dynamics of the
nucleons. This model can be used for the interpretation of the
isoscalar monopole resonance [21] (the breathing mode) de-
cay [8,11,22]. It consists of a harmonic oscillator describing
the collective excitation (to a first approximation) coupled
with a nonlinear (Woods-Saxon) oscillator, which, in the in-
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dependent particle approach, represents the motion of each
nucleon in the average potential created by all nucleons. The
model corresponds to a time-independent Hamiltonian sys-
tem with two degrees of freedom. The detailed investigation
of the specific giant resonances through this simple classical
model will be given elsewhere [23]. Here, we will use this
model in order to elucidate the relationship of relaxation dy-
namics with the structure of the chaotic component of the
phase space of the system. We should add that an appropriate
classical model has also been used to study the damping of
giant dipole resonance in Ref. [24]. While the intensity of
that chaotic component is usually measured by the largest
Lyapunov exponent as mentioned above, its extent is quan-
tified by the fraction of phase-space occupied by chaotic or-
bits. The aim of this paper is to explore the interrelation
between the relaxation time of a harmonic oscillator and A\,
as well as how this is affected by changes in the chaotic
fraction of phase space.

More specifically, as the considered model possesses
mixed phase space, we have found that, contrary to a com-
pletely chaotic system, a broad range of parameter space
exists where A, increases as the total energy increases and
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FIG. 1. Contour plot of the potential V(r,R) of the system
for a=0.5fm, b=0.2, Ry=7.6 fm, Vy=48 MeV, M/m=1, and
wy=13.73 MeV /1 [see Eq. (2)].
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FIG. 2. The amplitude A(r) of the oscillation of the mean value
(R(t)) around its equilibrium value R,,. The fit with a function of
the form Age™” is shown with the dotted line. The values of the
parameters are E=-20 MeV, M/m=1, Ry=7.69 fm, a=0.05 fm,
Vo=48 MeV, wy=13.73 MeV/#, and b=0.08.

also both \; and the relaxation time of an ensemble of cha-
otic orbits increase. We demostrate that this relationship is
affected by the form of the dispersion relation w(E) of the
nonlinear oscillator. In particular, the frequency w(E) must
either be a strictly increasing function of the energy or have
a maximum (zero dispersion oscillator [25]) for the above
mentioned behavior to occur. In these cases, the chaotic frac-
tion of phase space is shrinking as the total energy increases,
inducing a delay in the relaxation of the dynamics. Finally,
the dependence of the results on the form of the coupling as
well as on the particular choice of the potential of the non-
harmonic oscillator is explored.

The paper consists of four further sections. In Sec. II we
describe our model system. In Sec. III we present our find-
ings on the relation between relaxation time and Lyapunov
exponent for a particular case. In Sec. IV we discuss the
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FIG. 3. Time evolution of (\;) for five values of the total energy,
namely, E=-40, -30, -20, —-10, and -5 MeV. The values
of the other parameters are M/m=1, Ry=7.69 fm, a=0.05 fm,
Vo=48 MeV, wy=13.73 MeV/#, and b=0.08.
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FIG. 4. (a) (A1), (b) Typ, and (c) g as a function of the
total energy E for M/m=1, Ry=7.69 fm, a=0.05 fm, V;=48 MeV,
wy=13.73 MeV/f, and b=0.08.

dependence on the system parameters of the effects pre-
sented in Sec. III. In Sec. V we summarize our main results
and give future prospects.
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FIG. 5. (R,pg) Poincaré sections for E=(a) =35, (b) =25, (c) —15, and (d) =5 MeV. The other parameters are the same as those

of Fig. 3.

II. DESCRIPTION OF THE MODEL SYSTEM

Our model system consists of a particle moving in a
Woods-Saxon well of finite depth V| coupled with a har-
monic oscillator moving with frequency wpo. The Hamil-
tonian of the system is

2 2
H=&+pr+V(r,R), (1)
2m  2M

where the potential V(r,R) is given by
Vo
1+ exp{[r - R() + b(R() - R)]/a}

V(r,R)=-

1
+ Eng(R - Ry)%. (2)

A contour plot of the potential for a specific choice
of the parameters, namely, a=0.5 fm, »=0.2, Ry=7.69 fm,
Vo=48 MeV, M/m=1, and wy=13.73 MeV/#, is shown in
Fig. 1.

The choice of this Hamiltonian is motivated by the damp-
ing of a density collective mode, the isoscalar monopole
resonance (breathing mode) in nuclei, where the nuclear
shape is conserved during oscillations. Our model system

can be considered as a classical version of the vibrating po-
tential model of finite nuclei [8,11]. The Woods-Saxon well
is a good approximation to the self-consistent mean field in
nuclei, i.e., to the potential which is created by all nucleons
and in which each individual nucleon moves. When a
nucleus is excited into the isoscalar giant monopole reso-
nance nucleons move collectively in a way such that the
radius of the nucleus oscillates with frequency . Therefore
the mean field potential is also oscillating and the nucleons
move in an oscillating potential well. They collide with the
oscillating nuclear surface and exchange energy with it. The
nuclear surface is assigned a mass M and its motion is de-
scribed by the harmonic oscillator variable R. The strength of
the coupling between the particle and the harmonic oscillator
is controlled by the parameter b. In the limit »— 0 the oscil-
lators become uncoupled and thus the system becomes inte-
grable. As b increases the system becomes increasingly cha-
otic. The specific choise of the parameters refers to the study
of the isoscalar monopole resonance of the nucleus 2**Pb
[8,21,22].

The resulting Hamilton equations of motion are solved
with the use of an adaptive fourth order Runge-Kutta algo-
rithm. The total energy E was conserved with relative error
AE/E<107>. Rescaling the differential equations of motion
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FIG. 6. (r,E,) Poincaré sections for E=(a) 35, (b) -25, (c) 15, and (d) =5 MeV. The other parameters are the same as those of Fig.

3.

we find that the relevant parameters of the system are M/m,
Ry/a, Vol (ma’wj), and b.

III. RELAXATION TIME, LYAPUNOV EXPONENT, AND
CHAOTIC FRACTION OF PHASE SPACE

For the analysis of the system dynamics, we start with a
microcanonical ensemble of initial conditions (5000 in most
of the cases) in a rectangular region of the (r,E,) plane,
where E, is the particle energy defined as

2
V
E,=2r_ 0 G
2m 1 +exp{[r—Ry+b(Ry—R)]/a}

For each such ensemble, the total energy E=E,+Ey, is con-
stant, where Ep, is the energy of the harmonic oscillator
given by

1
Epo= EM“’%(R_R())z‘F - 4)

All initial conditions we use belong to the main chaotic re-
gion of phase space. We evolve them forward in time and at

each time instant ¢ we calculate the mean value (R(?)) of R.
It is expected that (R(¢)) will approach the equilibrium
value R,, (which is very close to Rj) almost exponentially
[4], since all orbits in the ensemble are chaotic. The corre-
sponding time scale defines the relaxation time. For the val-
ues of the parameters chosen, the time dependence of
(R(1))-R,, can be fitted very well by a function of the form
R-R,,=A(t)cos(wt), where A()=Ape™ and Ay, is the initial
amplitude. In Fig. 2 A(r) is shown for a particular case,
namely, E=-20 MeV. The fit with a function of the form
Age™ is also shown (dotted line). We calculate the half-life
T,,, of the initial amplitude A, as a function of the total
energy of the system. 7, and 7 are related by the relation
T,,=In2/v. We are interested in time scales of the order of
the relaxation time, i.e., times around 300 MeV#% ™! or around
60—80 periods of the harmonic oscillator. These times are
meaningful for applications, especially in nuclear physics
[8,11]. In our calculation we integrate the orbits of the en-
semble for a time interval equal to 200 periods of the har-
monic oscillator, which is more than enough for above ap-
plications. The structure of the phase space allows us, as will
become clear later, to use the same rectangular region of
initial conditions for all the considered values of the total
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FIG. 7. (a) The Woods-Saxon potential Vyg(R) for V

=48 MeV and four values of a, namely, 0.05, 0.5, 1.5, and 3.1 fm.
(b) The w,(E,) curve of the Woods-Saxon potential for the same
values of a. The straight line shows the frequency of the harmonic
oscillator.

energy. However, we have found that there is no dependence
of the relaxation time on the location of the distribution of
the initial conditions in phase space, provided that this dis-
tribution lies entirely in the main chaotic regime. Further-
more, in our calculations we have chosen our initial en-
semble to lie entirely within the chaotic sea sufficiently far
away from Kolmogorov-Arnold-Moser (KAM) tori and is-
lands of stability. Thus the cantori do not seem to play an
important role in our system, at least in the time scales we
are considering.

In order to quantify the degree of chaoticity of the en-
sembles of orbits we calculate the average value (\;) where
N, is a finite-time estimate of the largest Lyapunov exponent
of an orbit. This estimate is calculated by averaging
the growth rates of small perturbations along the orbit [1,2].
The Lyapunov exponent (\,) is calculated using the same
ensemble of trajectories and the same integration time as the
one used in the calculation of the relaxation time. Thus both
these calculations capture the ensemble dynamics at the de-
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sired (short) time scales. (\;(¢)) converges very smoothly in
a time scale of the order of the relaxation time [26]. This can
be seen from Fig. 3, where the time evolution of (\;) is
shown for five values of the total energy, namely, E=-40,
-30, =20, —10, and —5 MeV. We calculate (\,) as a function
of the total energy of the system.

In addition to \; we calculate the percentage ¢ of chaotic
phase space in the (R,pg) plane as a function of the total
energy of the system [27,28]. In order to do this, we start
with an ensemble of a large number of chaotic initial condi-
tions on the (R, pg) section and we integrate them forward in
time until they cover the entire accessible chaotic region. We
then divide the (R,pg) section into N=10* cells and count
the number of occupied cells N,,., i.e., the number of cells in
which there is at least one orbit point. We estimate the per-
centage of chaotic phase space as g=(N,../N)100%.

In the study presented in this section we choose the
following values for the parameters of the system:
Ry=7.69 fm, V=48 MeV, and w,=13.73 MeV/#. These
parameters are relevant for the decay of the isoscalar giant
monopole resonance of the nucleus *”*Pb as mentioned
above. The strength of the coupling has been chosen equal to
b=0.08. We also choose M/m=1 and a=0.05 fm. The re-
sults for (\,), T/, and ¢ as a function of the total energy of
the system are shown in Fig. 4. It is clearly seen that al-
though the value of (\;) is a monotonically increasing func-
tion of the total energy E (see for instance [3]), the relaxation
time, above a critical value of the total energy, stops decreas-
ing and starts increasing contrary to the common expectation
from fully chaotic systems. We also observe that above this
critical energy, the percentage g of chaoticity in the (R,pg)
section is decreasing. Motivated by this observation we con-
sider in more detail the Poincaré surfaces of section for dif-
ferent values of the total energy of the system. In Fig. 5,
(R,pg) sections (for r=Ry/2 and p,>0) for four values of
the total energy (E=-35, =25, —15, and -5 MeV) are shown.
In Fig. 6 we plot (r,E,) sections (for R=R,, pz>0) for the
same values of the total energy. From the Poincaré sections it
can be seen that the phase space mainly consists of a large
chaotic region and regular regions which can either be is-
lands of stability around the 1-1 resonance or KAM tori [1],
as will be made clear in the following. Although we are
concerned with the main chaotic region, there are certainly
other minor chaotic regions inside the islands of stability.
Since these regions are disjoint with the main chaotic region,
their value of (\,) should be different from that of the main
chaotic region [1,29].

The regular region of Figs. 5(c) and 5(d) contains invari-
ant tori and corresponds to the upper invariant curves of
Figs. 6(c) and 6(d), respectively. These curves are close to
straight lines and correspond to almost constant particle en-
ergy and hence almost constant total energy. They are there-
fore KAM tori, which are remnants of the uncoupled inte-
grable system. By inspecting these Poincaré sections, we
observe that the appearance of KAM tori leads to the ob-
served relative decrease of chaos in phase space. The onset
of this decrease coincides with a change in the monotonicity
of T, as a function of the energy. Once the KAM tori ap-
pear, they are not destroyed as the energy increases. We con-
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FIG. 8. (r,E,) Poincaré sections for E=—5 MeV, a=0.05 fm, and b=(a) 0.002, (b) 0.04, (c) 0.1, (d) 0.15, (e) 0.2, and (f) 0.3. The other

parameters are the same as those of Fig. 3.

jecture that such an appearance of KAM tori counteracts the
increase of the Lyapunov exponent and leads to a change in
the monotonicity of the relaxation time. But what causes this
reappearance of KAM tori in the system phase space for such
large values of the energy? How is it connected to the basic
properties of the nonharmonic oscillator? To answer this
question, we investigate the form of the dispersion relation
of the nonharmonic oscillator. This relation, which is sensi-

tive to the parameters of the system and controls the appear-
ance of KAM tori, will be studied in the following section.

IV. THE KEY ROLE OF THE DISPERSION RELATION
AND THE INFLUENCE OF THE COUPLING STRENGTH

The diffuseness parameter a is of crucial importance
for the appearance of the effect described in the previous
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eters are the same as those of Fig. 3.

section. In the Woods-Saxon potential Vys(r)=—V,/{1
+expl(r—Ry)/a]} the frequency of the motion of the particle
w, depends on its energy E,, whereas the frequency of the
harmonic oscillator wy, is independent of the energy. The

PHYSICAL REVIEW E 73, 016204 (2006)

frequency of the motion of a particle in a potential V(r) is
given by

r, dr -1
“’p(Ep)=7T(L m) , (5)

where r, and r; are the right and left turning points at a given
energy E,, i.e., the roots of the equation E,=V(r). The form
of the w,(E,) curve of the Woods-Saxon potential depends
strongly on a as can be seen from Fig. 7, where Vyg(r) and
w,(E,) curves for four values of a are shown. At the limit
a— 0 the potential tends to the square well and therefore the
w,(E,) curve has the form wpocxfE‘,,. For large values of «,
wp(E,,) is decreasing and for intermediate values it has a
maximum.

For a fixed value of a (i.e., a=0.05 fm) for which the
observed behavior of relaxation time occurs, the wp(Ep)
curve has two intersection points with the corresponding
curve of the harmonic oscillator. The leftmost intersection
point is a w,:wyp=1:1 resonance. This resonance is appar-
ent in Figs. 5 and 6. The rightmost intersection point is a
much less apparent 1:1 resonance located close to the edge of
the potential well. For small values of b, the phase space is
dominated by KAM tori. Resonances of small width also
exist. As the coupling strength b increases, the width of these
resonances also increases. They therefore overlap with
higher-order resonances located close to them. This overlap
leads to the appearance of a chaotic region. The area of this
chaotic region increases with b. Higher-order resonances
(1:2, 1:3,...) appear in the low-energy region and their den-
sity increases as the energy becomes smaller. Therefore, as b
increases chaos emerges first in the low-energy region of the
(r,E,) section. This transition is illustrated in Fig. 8, where
(r,E,) sections for a=0.05 fm and several values of b are
shown.

For fixed values of b and a, above some particle energy
threshold only KAM tori exist. As the energy increases, the
existing KAM tori are not destroyed and new KAM tori are
added to the phase space in the region of large particle ener-
gies. This happens provided the coupling is not strongly cha-
otic. Therefore, as the energy increases, the relative area of
the chaotic phase space decreases as shown in Fig. 6. In-
creasing b makes the system more chaotic, i.e., both the
Lyapunov exponent and the relative area of the chaotic phase
space increase (see Fig. 8). The inverse behavior of relax-
ation time and Lyapunov exponent appears as long as a suf-
ficiently wide layer of KAM tori exists at high energies. This
can be seen from Fig. 9, where the Lyapunov exponent in-
creases, the percentage of relative chaotic area decreases, and
the relaxation time, above a critical value of the total energy,
either increases or remains almost constant.

Increasing b further, will lead to a destruction of all KAM
tori and thus to the usual behavior of the relaxation time:
(\}) is an increasing function of the energy, ¢ is also increas-
ing due to the decrease of the area of the regular island
around the 1:1 resonance and T, is decreasing. As b in-
creases further (b=3 and above), although the portion of the
chaotic phase space grows, some stickiness effects may oc-
cur which also lead to an increase of relaxation time [27].
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FIG. 10. (r,E,) Poincaré sections for »=0.2 and a=(a) 0.05, (b) 0.5, (c) 1.5, and (d) 3.1 fm. The other parameters are the same as those

of Fig. 3.

Increasing a leads to a decrease of the maximum value of
the frequency w,(E,) of the Woods-Saxon potential and to a
shift of its location towards lower energies. In Fig. 10, (r,E,)
surfaces of section for »=0.2 and four values of a, namely,
0.05, 0.5, 1.5, and 3.1 fm, are shown. These correspond
to the three different qualitative forms of the w,(E,) curve
(see Fig. 7). For a=0.05 and 0.5 fm the curve has a maxi-
mum and two intersection points with the corresponding
curve of the harmonic oscillator. The leftmost of these points
corresponds to the 1:1 resonance which is located around
E,=-30 MeV and can be seen in Figs. 8(a) and 8(b). For
a=1.5 fm, w,(E,) has a maximum but no intersection points
with the corresponding curve of the harmonic oscillator. In
this case, as can be seen from Fig. 10(b), chaos emerges first
in the region of high particle energies. This is due to the fact
that the w,(E,) curve is not symmetric with respect to its
maximum: its slope is larger for energies above the maxi-
mum. Therefore, the density of the higher-order resonances
(1:2, 1:3,...) is larger for these energies, and these reso-
nances overlap, first creating a chaotic region at large ener-
gies. For a=3.1, w,(E,) is decreasing and has one intersec-
tion point with the corresponding curve of the harmonic

oscillator. In this case, the 1:2, 1:3,... resonances appear at
higher energies and they become denser near the edge of the
potential well, where the slope of the w,(E,) curve becomes
large.

The effect where Lyapunov exponent and relaxation time
both increase can also be observed in simpler systems, pro-
vided that the dispersion relation of the nonharmonic oscil-
lator has an extended increasing part. Examples of such sys-
tems are oscillators with potentials ~x*' (n=2,3,...)
coupled with harmonic oscillators. However, the generality
of this effect is limited by the form of the coupling term.
Actually it has been found that coupling terms exhibiting
strongly chaotic behavior (such as ~x?y?), destroy the above
mentioned effect and the usual behavior of relaxation times
is recovered.

V. CONCLUSIONS

Motivated by questions of the damping mechanisms of
collective motion in nuclei we have studied the behavior of
the relaxation time of an ensemble of chaotic orbits as a
function of the total energy in a system consisting of two
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oscillators, one of them being harmonic. It has been found
that, in a rather broad range of the parameters, the relaxation
time can increase or remain constant although the Lyapunov
exponent increases. We have attributed this behaviour to the
appearance of KAM tori, which limit the phase space avail-
able to chaotic orbits. For this behavior to occur, the disper-
sion relation of the nonharmonic oscillator must either be
strictly increasing or have a maximum. The dependence of
this behavior on the parameters, as well as on the coupling
has been investigated. In addition, it has been found that this
behavior can occur in very simple systems, provided that the
coupling is not strongly chaotic. The model used in this work

PHYSICAL REVIEW E 73, 016204 (2006)

can be extended to study the decay of the isoscalar giant
monopole resonances. A systematic study of this decay in
several nuclei is presently under way [23].
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